下载高清试卷
【2022年山东省威海市中考数学试卷】-第1页 试卷格式:2022年山东省威海市中考数学试卷.PDF
试卷热词:最新试卷、2022年、山东试卷、威海市试卷、数学试卷、九年级试卷、中考试卷、初中试卷
扫码查看解析
试卷题目
1.-5的相反数是(  )
  • A. 5
  • B.
    1
    5
  • C. -
    1
    5
  • D. -5
2.如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是(  )

  • A.
  • B.
  • C.
  • D.
3.一个不透明的袋子中装有2个红球、3个白球和4个黄球,每个球除颜色外都相同.从中任意摸出1个球,摸到红球的概率是(  )
  • A.
    2
    9
  • B.
    1
    3
  • C.
    4
    9
  • D.
    1
    2

4.下列计算正确的是(  )
  • A. a3•a3=a9
  • B. (a3)3=a6
  • C. a6÷a3=a2
  • D. a3+a3=2a3
5.图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是(  )

  • A. A点
  • B. B点
  • C. C点
  • D. D点
6.如图,在方格纸中,点P,Q,M的坐标分别记为(0,2),(3,0),(1,4).若MN∥PQ,则点N的坐标可能是(  )

  • A. (2,3)
  • B. (3,3)
  • C. (4,2)
  • D. (5,1)
7.试卷上一个正确的式子(
1
a+b
+
1
a-b
)÷★=
2
a+b
被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为(  )
  • A.
    a
    a-b
  • B.
    a-b
    a
  • C.
    a
    a+b
  • D.
    4a
    a2-b2

8.如图,二次函数y=ax2+bx(a≠0)的图象过点(2,0),下列结论错误的是(  )

  • A. b>0
  • B. a+b>0
  • C. x=2是关于x的方程ax2+bx=0(a≠0)的一个根
  • D. 点(x1,y1),(x2,y2)在二次函数的图象上,当x1>x2>2时,y2<y1<0
9.过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是(  )
  • A.
  • B.
  • C.
  • D.
10.由12个有公共顶点O的直角三角形拼成如图所示的图形,∠AOB=∠BOC=∠COD=…=∠LOM=30°.若SAOB=1,则图中与△AOB位似的三角形的面积为(  )

  • A. (
    4
    3
    )3
  • B. (
    4
    3
    )7
  • C. (
    4
    3
    )6
  • D. (
    3
    4
    )6
11.因式分解:ax2-4a=      
12.若关于x的一元二次方程x2-4x+m-1=0有两个不相等的实数根,则m的取值范围是       
13.某小组6名学生的平均身高为acm,规定超过acm的部分记为正数,不足acm的部分记为负数,他们的身高与平均身高的差值情况记录如下表:
学生序号 
身高差值(cm+2 +3 -1 -4 -1 

据此判断,2号学生的身高为       cm
14.按照如图所示的程序计算,若输出y的值是2,则输入x的值是       

15.正方形ABCD在平面直角坐标系中的位置如图所示,点A的坐标为(2,0),点B的坐标为(0,4).若反比例函数y=
k
x
(k≠0)的图象经过点C,则k的值为       

16.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn=      

17.解不等式组,并把解集在数轴上表示出来.
{
4x-2≤3(x+1)
1-
x-1
2
x
4

18.小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的河流宽度.他先在河岸设立A,B两个观测点,然后选定对岸河边的一棵树记为点M.测得AB=50m,∠MAB=22°,∠MBA=67°.请你依据所测数据求出这段河流的宽度(结果精确到0.1m).
参考数据:sin22°≈
3
8
cos22°≈
15
16
tan22°≈
2
5
sin67°≈
12
13
cos67°≈
5
13
tan67°≈
12
5


19.某学校开展“家国情•诵经典”读书活动.为了解学生的参与程度,从全校学生中随机抽取200人进行问卷调查,获取了他们每人平均每天阅读时间的数据(m/分钟).
将收集的数据分为A,B,C,D,E五个等级,绘制成如下统计图表(尚不完整):
平均每天阅读时间统计表
等级 人数(频数) 
A(10≤m<20) 
B(20≤m<30) 10 
C(30≤m<40) 
D(40≤m<50) 80 
E(50≤m≤60) 

请根据图表中的信息,解答下列问题:
(1)求x的值;
(2)这组数据的中位数所在的等级是       
(3)学校拟将平均每天阅读时间不低于50分钟的学生评为“阅读达人”予以表扬.若全校学生以1800人计算,估计受表扬的学生人数.

20.如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.
(1)若AB=AC,求证:∠ADB=∠ADE;
(2)若BC=3,⊙O的半径为2,求sin∠BAC.

21.某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.

22.(1)将两张长为8,宽为4的矩形纸片如图1叠放.
①判断四边形AGCH的形状,并说明理由;
②求四边形AGCH的面积.
(2)如图2,在矩形ABCD和矩形AFCE中,AB=2
5
,BC=7,CF=
5
,求四边形AGCH的面积.

23.探索发现
(1)在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(-3,0),B(1,0),与y轴交于点C,顶点为点D,连接AD.
①如图1,直线DC交直线x=1于点E,连接OE.求证:AD∥OE;
②如图2,点P(2,-5)为抛物线y=ax2+bx+3(a≠0)上一点,过点P作PG⊥x轴,垂足为点G.直线DP交直线x=1于点H,连接HG.求证:AD∥HG;
归纳概括
(2)通过上述两种特殊情况的证明,你是否有所发现?请仿照(1)写出你的猜想,并在图3上画出草图.
在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(-3,0),B(1,0),顶点为点D.点M为该抛物线上一动点(不与点A,B,D重合),      

24.回顾:用数学的思维思考
(1)如图1,在△ABC中,AB=AC.
①BD,CE是△ABC的角平分线.求证:BD=CE.
②点D,E分别是边AC,AB的中点,连接BD,CE.求证:BD=CE.
(从①②两题中选择一题加以证明)
猜想:用数学的眼光观察
经过做题反思,小明同学认为:在△ABC中,AB=AC,D为边AC上一动点(不与点A,C重合).对于点D在边AC上的任意位置,在另一边AB上总能找到一个与其对应的点E,使得BD=CE.进而提出问题:若点D,E分别运动到边AC,AB的延长线上,BD与CE还相等吗?请解决下面的问题:
(2)如图2,在△ABC中,AB=AC,点D,E分别在边AC,AB的延长线上,请添加一个条件(不再添加新的字母),使得BD=CE,并证明.
探究:用数学的语言表达
(3)如图3,在△ABC中,AB=AC=2,∠A=36°,E为边AB上任意一点(不与点A,B重合),F为边AC延长线上一点.判断BF与CE能否相等.若能,求CF的取值范围;若不能,说明理由.

查看全部题目